
HTTPolice Documentation
Release 0.4.0

Vasiliy Faronov

January 14, 2017

Contents

1 Quickstart 3

2 Installation 7

3 General concepts 9

4 Analyzing raw TCP streams 11

5 Analyzing HAR files 15

6 Viewing reports 17

7 Python API 19

Python Module Index 25

i

ii

HTTPolice Documentation, Release 0.4.0

HTTPolice is a lint for HTTP requests and responses. It checks them for conformance to standards and best practices.

This manual explains all features of HTTPolice in detail. If you want a brief introduction, see the Quickstart.

There is also a list of all notices that HTTPolice can output.

For recent changes in HTTPolice, see the changelog.

Contents 1

http://pythonhosted.org/HTTPolice/notices.html
https://github.com/vfaronov/httpolice/blob/master/CHANGELOG.rst

HTTPolice Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Quickstart

1.1 Installation

HTTPolice is a Python package that can be installed with pip (on Python 2.7 or 3.4+):

$ pip install HTTPolice

If you’re not familiar with pip, check the manual’s Installation section.

1.2 Using HAR files

Let’s start with something easy.

If you’re running Google Chrome, Firefox, or Microsoft Edge, you can use their developer tools to export HTTP
requests and responses as a HAR file, which can then be analyzed by HTTPolice.

For example, in Firefox, press F12 to open the toolbox, and switch to its Network pane. Then, open a simple Web
site—let’s try Mark Nottingham’s page. All HTTP exchanges made by the browser appear in the Network pane.
Right-click inside that pane and select “Save All As HAR”.

Then feed this HAR file to HTTPolice:

$ httpolice -i har /path/to/file.har
------------ request: GET /1441/25776044114_0e5b9879a0_z.jpg
------------ response: 200 OK
C 1277 Obsolete 'X-' prefix in X-Photo-Farm
C 1277 Obsolete 'X-' prefix in X-Photo-Origin
E 1000 Malformed Expires header
E 1241 Date + Age is in the future

1.3 Better reports

By default, HTTPolice prints a simple text report which may be hard to understand. Use the -o html option to make
a detailed HTML report instead. You will also need to redirect it to a file:

$ httpolice -i har -o html /path/to/file.har >report.html

Open report.html in your Web browser and enjoy.

3

https://en.wikipedia.org/wiki/.har
https://www.mnot.net/

HTTPolice Documentation, Release 0.4.0

1.4 Using mitmproxy

What if you have an HTTP API that is accessed by special clients? Let’s say curl is special enough:

$ curl -ksiX POST https://eve-demo.herokuapp.com/people \
> -H 'Content-Type: application/json' \
> -d '{"firstname":"John", "lastname":"Smith"}'
HTTP/1.1 201 CREATED
Connection: keep-alive
Content-Type: application/json
Content-Length: 279
Server: Eve/0.6.1 Werkzeug/0.10.4 Python/2.7.4
Date: Mon, 25 Apr 2016 09:21:32 GMT
Via: 1.1 vegur

{"_links": {"self": {"href": "people/571de19c4fd7bd0003356826", "title": "person"}}, "_etag": "3b1f9c356f87a615645e2e51f8d3e05e0e462c03", "_id": "571de19c4fd7bd0003356826", "_created": "Mon, 25 Apr 2016 09:21:32 GMT", "_updated": "Mon, 25 Apr 2016 09:21:32 GMT", "_status": "OK"}

How do you get this into HTTPolice?

One way is to use mitmproxy, an advanced tool for intercepting HTTP traffic. See its installation instructions.

Note: Another solution would be to use Fiddler. Especially Windows users may find it easier. Use Fiddler’s HAR
1.2 export to get the data into HTTPolice.

You’ll need the integration package:

$ pip install mitmproxy-HTTPolice

Now, we’re going to use mitmproxy’s command-line tool—mitmdump. The following command will start mitmdump
as an HTTP proxy on port 8080 with HTTPolice integration:

$ mitmdump -s "`python -m mitmproxy_httpolice` -o html report.html"

With mitmdump running, tell curl to use it as a proxy:

$ curl -x localhost:8080 \
> -ksiX POST https://eve-demo.herokuapp.com/people \
> -H 'Content-Type: application/json' \
> -d '{"firstname":"John", "lastname":"Williams"}'

In the output of mitmdump, you will see that it has intercepted the exchange. Now, when you stop mitmdump (Ctrl+C),
HTTPolice will write an HTML report to report.html.

1.5 Django integration

Suppose you’re building a Web application with Django (1.8+). You probably have a test suite that makes requests
to your app and checks responses. You can easily instrument this test suite with HTTPolice and get instant feedback
when you break the protocol.

$ pip install Django-HTTPolice

Add the HTTPolice middleware to the top of your middleware list:

MIDDLEWARE = [
'django_httpolice.HTTPoliceMiddleware',
'django.middleware.common.CommonMiddleware',

4 Chapter 1. Quickstart

https://mitmproxy.org/
http://docs.mitmproxy.org/en/stable/install.html
http://www.telerik.com/fiddler
http://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats
http://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats
http://docs.mitmproxy.org/en/latest/mitmdump.html
https://www.djangoproject.com/

HTTPolice Documentation, Release 0.4.0

...
]

Add a couple settings:

HTTPOLICE_ENABLE = True
HTTPOLICE_RAISE = 'error'

Now let’s run the tests and see what’s broken:

$ python manage.py test
...E
==
ERROR: test_query_plain (example_app.test.ExampleTestCase)
--
Traceback (most recent call last):

[...]
File "[...]/django_httpolice/middleware.py", line 92, in process_response
raise ProtocolError(exchange)

django_httpolice.common.ProtocolError: HTTPolice found problems in this response:
------------ request: GET /api/v1/words/?query=er
C 1070 No User-Agent header
------------ response: 200 OK
E 1038 Bad JSON body

--
Ran 4 tests in 0.380s

FAILED (errors=1)

In this example, the app sent a wrong Content-Type header and HTTPolice caught it.

1.6 More options

There are other ways to get your data into HTTPolice. Check the full manual.

1.6. More options 5

https://github.com/vfaronov/django-httpolice/blob/d382aa7/example/example_app/views.py#L43

HTTPolice Documentation, Release 0.4.0

6 Chapter 1. Quickstart

CHAPTER 2

Installation

HTTPolice is a Python package that requires Python 2.7 or 3.4+. It can be installed like all other Python packages:
with pip from PyPI.

If you’re not familiar with pip, you may need to install it manually or from your OS distribution. You may also need
development files and tools to compile dependencies.

PyPy (the 2.7 variant) is also supported, but you may experience problems with older PyPy versions (5.3.1 should be
OK).

2.1 On Debian/Ubuntu

$ sudo apt-get install python-pip python-dev libxml2-dev libxslt1-dev zlib1g-dev libffi-dev

Then, to install the HTTPolice command-line tool into ~/.local/bin:

$ pip install --user HTTPolice

Or, to install it system-wide:

$ sudo pip install HTTPolice

Check that the installation was successful:

$ httpolice --version
HTTPolice 0.4.0

2.2 On Fedora

Same as above, but use the following command to install dependencies:

$ sudo dnf install python-pip gcc gcc-c++ redhat-rpm-config python-devel libxml2-devel libxslt-devel libffi-devel

2.3 On Windows

HTTPolice uses libraries (lxml and brotlipy) that include binary CPython extensions. You probably want precompiled
versions of these extensions, and to get them, you may need specific versions of Python, lxml and brotlipy.

For example, at the time of writing, you can install Python 3.5 (not 3.6) and then simply do:

7

https://pip.pypa.io/en/stable/
https://pypi.python.org/pypi/HTTPolice
https://pip.pypa.io/en/stable/installing/
https://packaging.python.org/en/latest/install_requirements_linux/
http://pypy.org/
https://pypi.python.org/pypi/lxml
https://pypi.python.org/pypi/brotlipy
https://www.python.org/downloads/release/python-352/

HTTPolice Documentation, Release 0.4.0

C:\Users\Vasiliy\...\Python35>Scripts\pip install HTTPolice

Check that the installation was successful:

C:\Users\Vasiliy\...\Python35>Scripts\httpolice --version
HTTPolice 0.4.0

However, it’s possible that new versions of lxml and brotlipy might not have precompiled binaries for your version of
Python, and then you will have to check the PyPI pages of these libraries to find a version that has suitable binaries
(look for *-win32.whl), and install those specific versions before installing HTTPolice. For example:

C:\Users\Vasiliy\...\Python35>Scripts\pip install lxml==3.7.2
C:\Users\Vasiliy\...\Python35>Scripts\pip install brotlipy==0.6.0

8 Chapter 2. Installation

https://pypi.python.org/pypi

CHAPTER 3

General concepts

3.1 Exchanges

HTTPolice takes HTTP exchanges (also known as transactions) as input. Every exchange can consist of 1 request and
1+ responses. Usually there is just 1 response, but sometimes there are interim (1xx) responses before the main one.

If you only want to check the request, you can omit responses from the exchange.

On the other hand, if you only want to check the responses, you should still provide the request (if possible), because
responses cannot be properly analyzed without it. If you really have no access to the request, you can omit it, but
many checks will be disabled.

3.2 Reports

The output of HTTPolice is a report containing notices.

Every notice has an ID (such as “1061”) that can be used to silence it, and one of three severities:

error Something is clearly wrong. For example, a “MUST” requirement of a standard is clearly violated.

Please note that not all errors may be actual problems. Sometimes there is a good reason to violate a standard.
Sometimes you just don’t care. You decide which errors to fix and which to ignore. If you don’t want to see an
error, you can silence it.

comment Something is possibly wrong or sub-optimal, but HTTPolice isn’t sure. For example, a “SHOULD” require-
ment of a standard is clearly violated.

debug This just explains why HTTPolice did (or did not do) something. For example, when HTTPolice thinks that
a response was served from cache, it will report a debug notice to explain why it thinks so. This may help you
understand further cache-related notices for that response.

3.3 Silencing unwanted notices

You can silence notices that you don’t want to see. They will disappear from reports and from the Python API.

Please note that some notice IDs can stand for a range of problems. For example, most errors in header syntax are
reported as notice 1000, so if you silence it, you lose a big chunk of HTTPolice’s functionality.

9

https://tools.ietf.org/html/rfc7231#section-6.2
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

HTTPolice Documentation, Release 0.4.0

3.3.1 Silencing globally

When using the httpolice command-line tool, you can use the -s option to specify notice IDs to silence:

$ httpolice -s 1089 -s 1194 ...

Integration methods have similar mechanisms. For example, mitmproxy integration understands the same -s option.

3.3.2 Silencing locally

You can also silence notices on individual messages by adding the special HTTPolice-Silence header to them.
Its value is a comma-separated list of notice IDs. For example:

HTTP/1.1 405 Method Not Allowed
Content-Length: 0
HTTPolice-Silence: 1089, 1110

Requests can also silence notices on responses (but not vice-versa) by adding a resp keyword after an ID:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
HTTPolice-Silence: 1033 resp, 1031

10 Chapter 3. General concepts

http://mitmproxy-httpolice.readthedocs.io/

CHAPTER 4

Analyzing raw TCP streams

An obvious way to capture HTTP requests and responses is to dump them with a network sniffer. This only works
for cleartext connections (without TLS encryption), but on the other hand, you don’t need to change your clients or
servers.

HTTPolice can parse HTTP/1.x streams from the ground up. HTTP/2 is not yet supported.

4.1 Using tcpflow

You may be familiar with tcpdump, but it won’t work: HTTPolice needs the reassembled TCP streams, not individual
packets. You can get these streams with a tool called tcpflow:

$ mkdir dump

$ cd dump/

$ sudo tcpflow -T'%t-%A-%a-%B-%b-%#' port 80
tcpflow: listening on wlp4s0

(Note the -T option—it is necessary to get the right output.)

tcpflow starts capturing all connections to or from TCP port 80. For example, you can launch a Web browser and go
to an ‘http:’ site. Once you are done, exit the browser, then stop tcpflow with Ctrl+C. (It is important that connections
are closed before tcpflow shuts down, otherwise they may be incomplete.)

Now you have one or more pairs of stream files:

$ ls
1469847441-054.175.219.008-00080-172.016.000.100-38656-0 report.xml
1469847441-172.016.000.100-38656-054.175.219.008-00080-0

Tell HTTPolice to read this directory with the tcpflow input format:

$ httpolice -i tcpflow .

HTTPolice will combine the files into pairs based on their filenames. Due to a limitation in tcpflow, this only works if
every combination of source+destination address+port is unique. If there are duplicates, you will get an error.

4.2 Using tcpick

tcpick is another tool for reassembling TCP streams. It doesn’t have the “unique port” limitation of tcpflow, but it has

11

https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Tcpdump
https://github.com/simsong/tcpflow
https://github.com/simsong/tcpflow/issues/128
http://tcpick.sourceforge.net/

HTTPolice Documentation, Release 0.4.0

a different problem: sometimes it produces files that are clearly invalid HTTP streams (HTTPolice will fail to parse
them with notices like 1009).

Anyway, using it is very similar to using tcpflow:

$ mkdir dump

$ cd dump/

$ sudo tcpick -wR -F2 'port 80'
Starting tcpick 0.2.1 at 2016-07-30 06:14 MSK
Timeout for connections is 600
tcpick: listening on wlp4s0
setting filter: "port 80"
[...]
^C
3837 packets captured
30 tcp sessions detected

$ httpolice -i tcpick .

(Note the -wR -F2 options.)

4.3 Other sniffers

If you use some other tool to capture the TCP streams, use the streams input format to pass pairs of files:

$ httpolice -i streams requests1.dat responses1.dat requests2.dat ...

Or req-stream if you only have request streams:

$ httpolice -i req-stream requests1.dat requests2.dat ...

Or resp-stream if you only have response streams (not recommended):

$ httpolice -i resp-stream responses1.dat responses2.dat ...

Note that resp-stream may not work at all if any of the requests are HEAD, because responses to HEAD are
parsed differently.

4.4 Combined format

Sometimes you want to compose an HTTP exchange by hand, to test something. To make this easier, there’s a special
input format that combines the request and response streams into one file:

The lines at the beginning are ignored.
You can use them for comments.

======== BEGIN INBOUND STREAM ========
GET / HTTP/1.1
Host: example.com
User-Agent: demo

======== BEGIN OUTBOUND STREAM ========
HTTP/1.1 200 OK
Date: Thu, 31 Dec 2015 18:26:56 GMT

12 Chapter 4. Analyzing raw TCP streams

http://pythonhosted.org/HTTPolice/notices.html#1009
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7230#section-3.3.3

HTTPolice Documentation, Release 0.4.0

Content-Type: text/plain
Connection: close

Hello world!

It must be saved with CRLF (Windows) line endings.

Also, for this format, the filename suffix (extension) is important. If it is .https, the request URI is assumed to have
an https: scheme. If it is .noscheme, the scheme is unknown. Otherwise, the http: scheme is assumed.

Now, tell HTTPolice to use the combined format:

$ httpolice -i combined exchange1.txt

More examples can be found in HTTPolice’s test suite.

4.4. Combined format 13

https://github.com/vfaronov/httpolice/tree/master/test/combined_data

HTTPolice Documentation, Release 0.4.0

14 Chapter 4. Analyzing raw TCP streams

CHAPTER 5

Analyzing HAR files

HAR is a quasi-standardized JSON format for saving HTTP traffic. It is supported by many HTTP-related tools,
including developer consoles of some Web browsers.

HTTPolice can analyze HAR files with the -i har option:

$ httpolice -i har myfile.har

However, please note that HAR support in major Web browsers is erratic. HTTPolice tries to do a reasonable job on
files exported from Chrome, Firefox, and Edge, but some information is simply lost.

If HTTPolice fails on your HAR files, feel free to submit an issue (don’t forget to attach the files), and I’ll see what
can be done about it.

15

https://en.wikipedia.org/wiki/.har
https://github.com/vfaronov/httpolice/issues

HTTPolice Documentation, Release 0.4.0

16 Chapter 5. Analyzing HAR files

CHAPTER 6

Viewing reports

6.1 Text reports

By default, HTTPolice produces simple plain text reports like this:

------------ request: PUT /articles/109226/
E 1000 Malformed If-Match header
C 1093 User-Agent contains no actual product
------------ response: 204 No Content
C 1110 204 response with no Date header
E 1221 Strict-Transport-Security without TLS
------------ request: POST /articles/109226/comments/
...

They are intended to be suitable for grep and other Unix-like tools.

6.2 HTML reports

Use the -o html option to enable much more detailed HTML reports. These include explanations for every notice,
cross-referenced with the standards, as well as previews of the actual requests and responses.

Please note that these previews do not represent exactly what was sent on the wire. For example, in an HTTP/1.x
request, a header may have been split into two physical lines, but will be rendered as one line in the report.

6.2.1 Options

In the top right hand corner of an HTML report, there’s an options menu.

The first three options allow you to filter the report on the fly. This is independent from silencing: you cannot undo
silencing with these options.

Hide boring exchanges Check this to hide all exchanges where no problems were found (only debug notices or none
at all).

Boring notices Additional notice IDs or severities that should not be considered problems. For example:
1089 1135 C (C for “comment”).

Hide boring notices Check this if you don’t want to see those boring notices at all. They will be hidden even from
exchanges that have other problems.

Other options:

17

HTTPolice Documentation, Release 0.4.0

Show remarks Check this to show remarks before requests and responses, if any. The nature of these remarks depends
on where the data comes from. If you use the httpolice command-line tool, remarks will contain the names
of the input files and (for streams input only) the byte offsets within those files. This can help with debugging.

6.3 HTML in text

What if you want full details like in HTML reports, but on a textual display? Perhaps you’re running HTTPolice on a
remote machine via ssh.

You can simply use a text-mode Web browser like w3m:

$ httpolice -o html ... | w3m -M -T text/html

6.4 Exit status

When using the httpolice command-line tool, there’s another channel of information besides the report itself: the
command’s exit status. If you pass the --fail-on option, the exit status will be non-zero if any notices with the
given severity (or higher) have been reported. For example:

$ httpolice -i combined --fail-on=comment test/combined_data/1125_1
------------ request: GET /
------------ response: 304 Not Modified
E 1125 Probably wrong use of status code 304

$ echo $?
1

This can be used to take automated action (like failing tests) without parsing the report itself.

18 Chapter 6. Viewing reports

http://w3m.sourceforge.net/

CHAPTER 7

Python API

HTTPolice can be used as a Python library: for example, to analyze requests or responses as part of a test suite. It is
not intended to be used inside live production processes.

7.1 Example

import io
import httpolice

exchanges = [
httpolice.Exchange(

httpolice.Request(u'https',
u'GET', u'/index.html', u'HTTP/1.1',
[(u'Host', b'example.com')],
b''),

[
httpolice.Response(u'HTTP/1.1', 401, u'Unauthorized',

[(u'Content-Type', b'text/plain')],
b'No way!'),

]
)

]

bad_exchanges = []

for exch in exchanges:
exch.silence([1089, 1227]) # Errors we don't care about
httpolice.check_exchange(exch)
if any(notice.severity > httpolice.Severity.comment

for resp in exch.responses # We only care about responses
for notice in resp.notices):

bad_exchanges.append(exch)

if bad_exchanges:
with io.open('report.html', 'wb') as f:

httpolice.html_report(bad_exchanges, f)
print('%d exchanges had problems; report written to file' %

len(bad_exchanges))

19

HTTPolice Documentation, Release 0.4.0

7.2 API reference

class httpolice.Request(scheme, method, target, version, header_entries, body, trailer_entries=None,
remark=None)

Parameters

• scheme – The scheme of the request URI, as a Unicode string (usually u’http’ or
u’https’), or None if unknown (this disables some checks).

• method – The request method, as a Unicode string.

• target – The request target, as a Unicode string. It must be in one of the four forms
defined by RFC 7230. (For HTTP/2, it can be reconstructed from pseudo-headers.)

• version – The request’s protocol version, as a Unicode string, or None if unknown (this
disables some checks).

For requests sent over HTTP/1.x connections, this should be the HTTP version sent in the
request line, such as u’HTTP/1.0’ or u’HTTP/1.1’.

For requests sent over HTTP/2 connections, this should be u’HTTP/2’.

• header_entries – A list of the request’s headers (may be empty). It must not include
HTTP/2 pseudo-headers.

Every item of the list must be a (name, value) pair.

name must be a Unicode string.

value may be a byte string or a Unicode string. If it is Unicode, HTTPolice will assume
that it has been decoded from ISO-8859-1 (the historic encoding of HTTP), and will encode
it back into ISO-8859-1 before any processing.

• body – The request’s payload body, as a byte string, or None if unknown (this disables
some checks).

If the request has no payload (like a GET request), this should be the empty string b’’.

This must be the payload body as defined by RFC 7230: after remov-
ing any Transfer-Encoding (like chunked), but before removing any
Content-Encoding (like gzip).

• trailer_entries – A list of headers from the request’s trailer part (as found in chunked
coding or HTTP/2), or None if there is no trailer part.

The format is the same as for header_entries.

• remark – If not None, this Unicode string will be shown above the request in HTML
reports (when the appropriate option is enabled). For example, it can be used to identify the
source of the data: u’from somefile.dat, offset 1337’.

notices
A list of Complaint instances reported on this object.

silence(notice_ids)
Silence unwanted notices on this object.

Parameters notice_ids – An iterable of notice IDs that will be silenced on this object, so
they don’t appear in notices or in reports.

20 Chapter 7. Python API

https://tools.ietf.org/html/rfc7230#section-5.3
https://tools.ietf.org/html/rfc7540#section-8.1.2.3
https://tools.ietf.org/html/rfc7230#section-3.1.1
https://tools.ietf.org/html/rfc7540#section-8.1.2.1
https://tools.ietf.org/html/rfc7230#section-3.3
https://tools.ietf.org/html/rfc7230#section-4.1.2
https://tools.ietf.org/html/rfc7230#section-4.1.2
https://tools.ietf.org/html/rfc7540#section-8.1

HTTPolice Documentation, Release 0.4.0

class httpolice.Response(version, status, reason, header_entries, body, trailer_entries=None, re-
mark=None)

Parameters

• version – The response’s protocol version, as a Unicode string, or None if unknown (this
disables some checks).

For responses sent over HTTP/1.x connections, this should be the HTTP version sent in the
status line, such as u’HTTP/1.0’ or u’HTTP/1.1’.

For responses sent over HTTP/2 connections, this should be u’HTTP/2’.

• status – The response’s status code, as an integer.

• reason – The response’s reason phrase (such as “OK” or “Not Found”), as a Unicode
string, or None if unknown (as in HTTP/2).

• header_entries – A list of the response’s headers (may be empty). It must not include
HTTP/2 pseudo-headers.

Every item of the list must be a (name, value) pair.

name must be a Unicode string.

value may be a byte string or a Unicode string. If it is Unicode, HTTPolice will assume
that it has been decoded from ISO-8859-1 (the historic encoding of HTTP), and will encode
it back into ISO-8859-1 before any processing.

• body – The response’s payload body, as a byte string, or None if unknown (this disables
some checks).

If the response has no payload (like 204 or 304 responses), this should be the empty string
b’’.

This must be the payload body as defined by RFC 7230: after remov-
ing any Transfer-Encoding (like chunked), but before removing any
Content-Encoding (like gzip).

• trailer_entries – A list of headers from the response’s trailer part (as found in chun-
ked coding or HTTP/2), or None if there is no trailer part.

The format is the same as for header_entries.

• remark – If not None, this Unicode string will be shown above this response in HTML
reports (when the appropriate option is enabled). For example, it can be used to identify the
source of the data: u’from somefile.dat, offset 1337’.

notices
A list of Complaint instances reported on this object.

silence(notice_ids)
Silence unwanted notices on this object.

Parameters notice_ids – An iterable of notice IDs that will be silenced on this object, so
they don’t appear in notices or in reports.

class httpolice.Exchange(req, resps)

Parameters

7.2. API reference 21

https://tools.ietf.org/html/rfc7230#section-3.1.2
https://tools.ietf.org/html/rfc7540#section-8.1.2.1
https://tools.ietf.org/html/rfc7230#section-3.3
https://tools.ietf.org/html/rfc7230#section-4.1.2
https://tools.ietf.org/html/rfc7230#section-4.1.2
https://tools.ietf.org/html/rfc7540#section-8.1

HTTPolice Documentation, Release 0.4.0

• req – The request, as a Request object. If it is not available, you can pass None, and the
responses will be checked on their own. However, this disables many checks which rely
on context information from the request.

• resps – The responses to req, as a list of Response objects. Usually this will be a list
of 1 element. If you only want to check the request, pass an empty list [].

request
The Request object passed to the constructor.

responses
The list of Response objects passed to the constructor.

silence(notice_ids)
Silence unwanted notices on this object.

Parameters notice_ids – An iterable of notice IDs that will be silenced on this object, so
they don’t appear in notices or in reports.

httpolice.check_exchange(exch)
Run all checks on the exchange exch, modifying it in place.

class httpolice.Complaint
A notice as reported in a particular place.

id
The notice’s ID (an integer).

severity
The notice’s severity, as a member of the Severity enumeration.

class httpolice.Severity
A notice’s severity.

This is a Python 3.4 style enumeration with the additional feature that its members are ordered:

>>> Severity.comment < Severity.error
True

The underlying values of this enumeration are not part of the API.

comment = <Severity.comment: 1>

debug = <Severity.debug: 0>

error = <Severity.error: 2>

22 Chapter 7. Python API

HTTPolice Documentation, Release 0.4.0

httpolice.text_report(exchanges, buf)
Generate a plain-text report with check results.

Parameters

• exchanges – An iterable of Exchange objects. They must be already processed by
check_exchange().

• buf – The file (or file-like object) to which the report will be written. It must be opened in
binary mode (not text).

httpolice.html_report(exchanges, buf)
Generate an HTML report with check results.

Parameters

• exchanges – An iterable of Exchange objects. They must be already processed by
check_exchange().

• buf – The file (or file-like object) to which the report will be written. It must be opened in
binary mode (not text).

7.3 Integration helpers

Functions that may be useful for integrating with HTTPolice.

httpolice.helpers.headers_from_cgi(cgi_dict)
Convert CGI variables into header entries.

Parameters cgi_dict – A mapping of CGI-like meta-variables, as found in (for example)
WSGI’s environ or django.http.HttpRequest.META.

Returns A list of header entries, suitable for passing into httpolice.Request.

httpolice.helpers.pop_pseudo_headers(entries)
Remove and return HTTP/2 pseudo-headers from a list of headers.

Parameters entries – A list of header name-value pairs, as would be passed to
httpolice.Request or httpolice.Response. It will be modified in-place by remov-
ing all names that start with a colon (:).

Returns A dictionary of the removed pseudo-headers.

Integration packages:

• mitmproxy integration

• Django integration

• Chrome extension (third-party)

7.3. Integration helpers 23

https://tools.ietf.org/html/rfc7540#section-8.1.2.1
http://mitmproxy-httpolice.readthedocs.io/
http://django-httpolice.readthedocs.io/
https://chrome.google.com/webstore/detail/httpolice-devtool/hnlnhebgfcfemjaphgbeokdnfpgbnhgn

HTTPolice Documentation, Release 0.4.0

24 Chapter 7. Python API

Python Module Index

h
httpolice.helpers, 23

25

HTTPolice Documentation, Release 0.4.0

26 Python Module Index

Index

C
check_exchange() (in module httpolice), 22
comment (httpolice.Severity attribute), 22
Complaint (class in httpolice), 22

D
debug (httpolice.Severity attribute), 22

E
error (httpolice.Severity attribute), 22
Exchange (class in httpolice), 21

H
headers_from_cgi() (in module httpolice.helpers), 23
html_report() (in module httpolice), 23
httpolice.helpers (module), 23

I
id (httpolice.Complaint attribute), 22

N
notices (httpolice.Request attribute), 20
notices (httpolice.Response attribute), 21

P
pop_pseudo_headers() (in module httpolice.helpers), 23

R
Request (class in httpolice), 20
request (Exchange attribute), 22
Response (class in httpolice), 21
responses (Exchange attribute), 22

S
Severity (class in httpolice), 22
severity (httpolice.Complaint attribute), 22
silence() (httpolice.Exchange method), 22
silence() (httpolice.Request method), 20
silence() (httpolice.Response method), 21

T
text_report() (in module httpolice), 23

27

	Quickstart
	Installation
	General concepts
	Analyzing raw TCP streams
	Analyzing HAR files
	Viewing reports
	Python API
	Python Module Index

