

HTTPolice user manual

HTTPolice [https://github.com/vfaronov/httpolice] is a validator or “linter” for HTTP requests and responses.
It can spot bad header syntax, inappropriate status codes, and other potential
problems in your HTTP server or client.

This manual explains all features of HTTPolice in detail.
For a hands-on introduction, jump to the Quickstart.

Contents

	Quickstart
	Installation

	Using HAR files

	Better reports

	Using mitmproxy

	Django integration

	More options

	Installation
	On Debian/Ubuntu

	On Fedora

	On Windows

	General concepts
	Exchanges

	Reports

	Silencing unwanted notices

	Analyzing raw TCP streams
	Using tcpflow

	Using tcpick

	Other sniffers

	Combined format

	Analyzing HAR files

	Viewing reports
	Text reports

	HTML reports

	HTML in text

	Exit status

	Python API
	Example

	API reference

	Integration helpers

	History of changes
	0.8.0 - 2019-03-03

	0.7.0 - 2018-03-31

	0.6.0 - 2017-08-02

	0.5.2 - 2017-03-24

	0.5.1 - 2017-03-15

	0.5.0 - 2017-03-12

	0.4.0 - 2017-01-14

	0.3.0 - 2016-08-14

	0.2.0 - 2016-05-08

	0.1.0 - 2016-04-25

Supplementary documents

	List of all notices that HTTPolice can output

	Example report produced by HTTPolice

Integration packages

	mitmproxy integration [https://mitmproxy-httpolice.readthedocs.io/]

	Django integration [https://django-httpolice.readthedocs.io/]

	Chrome extension [https://chrome.google.com/webstore/detail/httpolice-devtool/hnlnhebgfcfemjaphgbeokdnfpgbnhgn] (third-party)

Quickstart

Installation

HTTPolice is a Python package that can be installed with pip (on Python 3.4+):

$ pip3 install HTTPolice

If you’re not familiar with pip, check the manual’s Installation section.

Using HAR files

Let’s start with something easy.

If you’re running Google Chrome, Firefox, or Microsoft Edge,
you can use their developer tools to export HTTP requests and responses
as a HAR file [https://en.wikipedia.org/wiki/.har], which can then be analyzed by HTTPolice.

For example, in Firefox,
press F12 to open the toolbox, and switch to its Network pane.
Then, open a simple Web site—I’m going to use h2o.examp1e.net [https://h2o.examp1e.net/] here.
All HTTP exchanges made by the browser appear in the Network pane.
Right-click inside that pane and select “Save All As HAR”.

Then feed this HAR file to HTTPolice:

$ httpolice -i har /path/to/file.har
------------ request: GET /search/searchindex.js
C 1032 Host should be the first header
------------ request: GET /analytics.js
------------ response: 200 OK
C 1299 Quoted comma in Alt-Svc might confuse a naive parser
C 1035 Deprecated media type text/javascript
C 1258 HTTP/2 should use ALTSVC frame instead of Alt-Svc header
D 1168 Age header implies response from cache
E 1173 Response to "Cache-Control: no-cache" can't be served from cache
------------ request: GET /repos/h2o/h2o?callback=callback
------------ response: 200 OK
C 1277 Obsolete 'X-' prefix in headers
------------ request: GET /r/collect?v=1&_v=j66&a=1028424992&t=pageview&_s=1...
------------ response: 200 OK
E 1108 Wrong day of week in Expires
C 1299 Quoted comma in Alt-Svc might confuse a naive parser
C 1162 Pragma: no-cache is for requests
C 1258 HTTP/2 should use ALTSVC frame instead of Alt-Svc header

Better reports

By default, HTTPolice prints a simple text report
which may be hard to understand.
Use the -o html option to make a detailed HTML report instead.
You will also need to redirect it to a file:

$ httpolice -i har -o html /path/to/file.har >report.html

Open report.html in your Web browser and enjoy.

Using mitmproxy

What if you have an HTTP API that is accessed by special clients?
Let’s say curl is special enough:

$ curl -ksi \
> -X PATCH https://eve-demo.herokuapp.com/people/5ab12b10662d240004d08b31 \
> -H 'Content-Type: application/json' \
> -H 'If-Match: 9f5cdb43a57b04abe342f6a425260f5e6adae359' \
> -d '{"firstname": "John"}'
HTTP/1.1 200 OK
Connection: keep-alive
Content-Type: application/json
Content-Length: 279
Etag: "9a056970404b9dd20c94c274fbdd6db2239800ac"
Server: Eve/0.7.6 Werkzeug/0.10.4 Python/2.7.4
Date: Sat, 31 Mar 2018 13:23:08 GMT
Via: 1.1 vegur

{"_updated": "Sat, 31 Mar 2018 13:23:08 GMT", "_id": "5ab12b10662d240004d08b31", "_links": {"self": {"title": "person", "href": "people/5ab12b10662d240004d08b31"}}, "_status": "OK", "_etag": "9a056970404b9dd20c94c274fbdd6db2239800ac", "_created": "Tue, 20 Mar 2018 15:38:56 GMT"}

How do you get this into HTTPolice?

One way is to use mitmproxy [https://mitmproxy.org/], an advanced tool for inspecting HTTP traffic.
Install it in a Python 3.6+ environment with HTTPolice integration:

$ pip3 install mitmproxy-HTTPolice

See also the instructions for installing mitmproxy via pip3 [https://docs.mitmproxy.org/stable/overview-installation/#installation-on-linux-via-pip3].

Doesn’t work on Windows

Try the Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/about], or use Fiddler [https://www.telerik.com/fiddler] instead
(Fiddler’s HAR 1.2 export [https://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats] can get your data into HTTPolice).

The following command will start mitmproxy as a reverse proxy
in front of your API on port 8080, with HTTPolice integration:

$ mitmproxy --mode reverse:https://eve-demo.herokuapp.com \
> -s "`python3 -m mitmproxy_httpolice`"

Now tell your client to talk to port 8080 instead of directly to the API:

$ curl -ksi \
> -X PATCH https://localhost:8080/people/5ab12b10662d240004d08b31 \
> -H 'Content-Type: application/json' \
> -H 'If-Match: 9a056970404b9dd20c94c274fbdd6db2239800ac' \
> -d '{"firstname": "Sam"}'

In mitmproxy, you will see that it has intercepted the exchange.
Open its details (Enter → Tab → Tab) to see the HTTPolice report on it:

[image: _images/mitmproxy-httpolice.png]

Django integration

Suppose you’re building a Web application with Django [https://www.djangoproject.com/] (1.11+).
You probably have a test suite
that makes requests to your app and checks responses.
You can easily instrument this test suite with HTTPolice
and get instant feedback when you break the protocol.

$ pip install Django-HTTPolice

Add the HTTPolice middleware to the top of your middleware list:

MIDDLEWARE = [
 'django_httpolice.HTTPoliceMiddleware',
 'django.middleware.common.CommonMiddleware',
 # ...
]

Add a couple settings:

HTTPOLICE_ENABLE = True
HTTPOLICE_RAISE = 'error'

Now let’s run the tests and see what’s broken:

$ python manage.py test
...E
==
ERROR: test_query_plain (example_app.test.ExampleTestCase)
--
Traceback (most recent call last):
 [...]
 File "[...]/django_httpolice/middleware.py", line 92, in process_response
 raise ProtocolError(exchange)
django_httpolice.common.ProtocolError: HTTPolice found problems in this response:
------------ request: GET /api/v1/words/?query=er
C 1070 No User-Agent header
------------ response: 200 OK
E 1038 Bad JSON body

--
Ran 4 tests in 0.380s

FAILED (errors=1)

In this example [https://github.com/vfaronov/django-httpolice/blob/d382aa7/example/example_app/views.py#L43], the app sent a wrong Content-Type header
and HTTPolice caught it.

More options

There are other ways to get your data into HTTPolice.
Check the full manual.

Installation

HTTPolice is a Python package that requires Python [https://www.python.org/] 3.4+.
PyPy [http://pypy.org/] is also supported.

Like other Python packages, HTTPolice is installed with pip [https://pip.pypa.io/] from PyPI [https://pypi.org/project/HTTPolice/].
If you’re not familiar with pip,
you may need to install it manually [https://pip.pypa.io/page/installing/] or from your OS distribution [https://packaging.python.org/guides/installing-using-linux-tools/].

On Debian/Ubuntu

Depending on your setup, you may or may not need to install these packages:

$ sudo apt-get install python3-pip python3-dev libxml2-dev libxslt1-dev zlib1g-dev

Then, to install the HTTPolice command-line tool into ~/.local/bin:

$ pip3 install --user HTTPolice

Or, to install it system-wide:

$ sudo pip3 install HTTPolice

Check that the installation was successful:

$ httpolice --version
HTTPolice 0.7.0

On Fedora

Same as above, but the dependency packages are:

$ sudo dnf install python3-pip gcc gcc-c++ redhat-rpm-config python3-devel libxml2-devel libxslt-devel

On Windows

After installing a recent Python [https://www.python.org/downloads/], typically all you need to do is:

C:\Users\Vasiliy\...\Python36>Scripts\pip install HTTPolice

Check that the installation was successful:

C:\Users\Vasiliy\...\Python36>Scripts\httpolice --version
HTTPolice 0.7.0

But if pip install starts trying (and failing) to compile some libraries,
you may need to give it a hand: check the PyPI [https://pypi.org/] pages for those libraries
(such as lxml [https://pypi.org/project/lxml/] or Brotli [https://pypi.org/project/Brotli/]) to find versions that have suitable
pre-built binares (*-win32.whl), and install those specific versions first.
For example:

C:\Users\Vasiliy\...\Python36>Scripts\pip install lxml==3.8.0
C:\Users\Vasiliy\...\Python36>Scripts\pip install Brotli==1.0.4
C:\Users\Vasiliy\...\Python36>Scripts\pip install HTTPolice

General concepts

Exchanges

HTTPolice takes HTTP exchanges (also known as transactions) as input.
An exchange can consist of one request and one or more responses.
Usually there is just one response,
but sometimes there are interim (1xx) responses [https://tools.ietf.org/html/rfc7231#section-6.2] before the main one.

If you only want to check the request,
you can omit responses from the exchange.

On the other hand, if you only want to check the responses,
you should still provide the request (if possible),
because responses cannot be properly analyzed without it.
If you really have no access to the request, you can omit it,
but many checks will be disabled.

Reports

The output of HTTPolice is a report containing notices.

Every notice has an ID (such as “1061”)
that can be used to silence it,
and one of three severities:

	error

	Something is clearly wrong.
For example, a “MUST” requirement [https://tools.ietf.org/html/rfc2119] of a standard is clearly violated.

Please note that not all errors may be actual problems.
Sometimes there is a good reason to violate a standard.
Sometimes you just don’t care.
You decide which errors to fix and which to ignore.
If you don’t want to see an error, you can silence it.

	comment

	Something is possibly wrong or sub-optimal, but HTTPolice isn’t sure.
For example, a “SHOULD” requirement [https://tools.ietf.org/html/rfc2119] of a standard is clearly violated.

	debug

	This just explains why HTTPolice did (or did not do) something.
For example, when HTTPolice thinks that a response was served from cache,
it will report a debug notice to explain why it thinks so.
This may help you understand further cache-related notices
for that response.

Silencing unwanted notices

You can silence notices that you don’t want to see.
They will disappear from reports and from the Python API.

Please note that some notice IDs can stand for a range of problems.
For example, most errors in header syntax are reported as notices 1000 or 1158,
so if you silence them, you may lose a big chunk of HTTPolice’s functionality.

Silencing globally

When using the httpolice command-line tool,
you can use the -s option to specify notice IDs to silence:

$ httpolice -s 1089 -s 1194 ...

Integration methods have similar mechanisms.
For example, mitmproxy integration [https://mitmproxy-httpolice.readthedocs.io/] has the httpolice_silence option.

Silencing locally

You can also silence notices on individual messages
by adding the special HTTPolice-Silence header to them.
Its value is a comma-separated list of notice IDs. For example:

HTTP/1.1 405 Method Not Allowed
Content-Length: 0
HTTPolice-Silence: 1089, 1110

Requests can also silence notices on responses (but not vice-versa)
by adding a resp keyword after an ID:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
HTTPolice-Silence: 1033 resp, 1031

Analyzing raw TCP streams

An obvious way to capture HTTP requests and responses
is to dump them with a network sniffer [https://en.wikipedia.org/wiki/Packet_analyzer].
This only works for cleartext connections (without TLS encryption),
but on the other hand, you don’t need to change your clients or servers.

HTTPolice can parse HTTP/1.x streams from the ground up.
Parsing HTTP/2 is not yet supported.

Using tcpflow

You may be familiar with tcpdump [https://en.wikipedia.org/wiki/Tcpdump], but it won’t work:
HTTPolice needs the reassembled TCP streams, not individual packets.
You can get these streams with a tool called tcpflow [https://github.com/simsong/tcpflow]:

$ mkdir dump

$ cd dump/

$ sudo tcpflow -T'%t-%A-%a-%B-%b-%#' port 80
reportfilename: ./report.xml
reportfilename: ./report.xml
tcpflow: listening on wlp4s0

(Note the -T option—it is necessary to get the right output.)

tcpflow starts capturing all connections to or from TCP port 80.
For example, you can launch a Web browser and go to an ‘http:’ site.
Once you are done, exit the browser, then stop tcpflow with Ctrl+C.
(It is important that connections are closed before tcpflow shuts down,
otherwise they may be incomplete.)

Now you have one or more pairs of stream files:

$ ls
1469847441-054.175.219.008-00080-172.016.000.100-38656-0 report.xml
1469847441-172.016.000.100-38656-054.175.219.008-00080-0

Tell HTTPolice to read this directory with the tcpflow input format:

$ httpolice -i tcpflow .

HTTPolice will combine the files into pairs based on their filenames.
Due to a limitation in tcpflow [https://github.com/simsong/tcpflow/issues/128], this only works if
every combination of source+destination address+port is unique.
If there are duplicates, you will get an error.

It’s OK if you capture some streams that are not HTTP/1.x.
HTTPolice will just complain with notices such as 1279.
This means you can run tcpflow without a filter, capturing all TCP traffic
on a given network interface, and then let HTTPolice sort it out
while silencing those notices:

$ sudo tcpflow -T'%t-%A-%a-%B-%b-%#'

$ httpolice -i tcpflow -o html -s 1279 . >../report.html

Using tcpick

tcpick [http://tcpick.sourceforge.net/] is another tool for reassembling TCP streams.
It doesn’t have the “unique port” limitation of tcpflow,
but it has a different problem:
sometimes it produces files that are clearly invalid HTTP streams
(HTTPolice will fail to parse them with notices like 1009).

Anyway, using it is very similar to using tcpflow:

$ mkdir dump

$ cd dump/

$ sudo tcpick -wR -F2 'port 80'
Starting tcpick 0.2.1 at 2016-07-30 06:14 MSK
Timeout for connections is 600
tcpick: listening on wlp4s0
setting filter: "port 80"
[...]
^C
3837 packets captured
30 tcp sessions detected

$ httpolice -i tcpick .

(Note the -wR -F2 options.)

Other sniffers

If you use some other tool to capture the TCP streams,
use the streams input format to pass pairs of files:

$ httpolice -i streams requests1.dat responses1.dat requests2.dat ...

Or req-stream if you only have request streams:

$ httpolice -i req-stream requests1.dat requests2.dat ...

Or resp-stream if you only have response streams
(not recommended):

$ httpolice -i resp-stream responses1.dat responses2.dat ...

Note that resp-stream may not work at all
if any of the requests are HEAD [https://tools.ietf.org/html/rfc7231#section-4.3.2],
because responses to HEAD are parsed differently [https://tools.ietf.org/html/rfc7230#section-3.3.3].

Combined format

Sometimes you want to compose an HTTP exchange by hand, to test something.
To make this easier, there’s a special input format
that combines the request and response streams into one file:

The lines at the beginning are ignored.
You can use them for comments.

======== BEGIN INBOUND STREAM ========
GET / HTTP/1.1
Host: example.com
User-Agent: demo

======== BEGIN OUTBOUND STREAM ========
HTTP/1.1 200 OK
Date: Thu, 31 Dec 2015 18:26:56 GMT
Content-Type: text/plain
Connection: close

Hello world!

It must be saved with CRLF (Windows) line endings.

Also, for this format, the filename suffix (extension) is important.
If it is .https, the request URI is assumed to have an https: scheme.
If it is .noscheme, the scheme is unknown.
Otherwise, the http: scheme is assumed.

Now, tell HTTPolice to use the combined format:

$ httpolice -i combined exchange1.txt

More examples can be found in HTTPolice’s test suite [https://github.com/vfaronov/httpolice/tree/master/test/combined_data].

Analyzing HAR files

HAR [https://en.wikipedia.org/wiki/.har] is a quasi-standardized JSON format for saving HTTP traffic.
It is supported by many HTTP-related tools,
including developer consoles of some Web browsers.

HTTPolice can analyze HAR files with the -i har option:

$ httpolice -i har myfile.har

However, please note that HAR support in exporters is erratic.
HTTPolice tries to do a reasonable job on files exported from
major Web browsers and some other HTTP tools,
but some information is simply lost.

If HTTPolice fails on your HAR files,
feel free to submit an issue [https://github.com/vfaronov/httpolice/issues] (don’t forget to attach the files),
and I’ll see what can be done about it.

Viewing reports

Text reports

By default, HTTPolice produces simple plain text reports like this:

------------ request: PUT /articles/109226/
E 1000 Malformed If-Match header
C 1093 User-Agent contains no actual product
------------ response: 204 No Content
C 1110 204 response with no Date header
E 1221 Strict-Transport-Security without TLS
------------ request: POST /articles/109226/comments/
...

They are intended to be suitable for grep and other Unix-like tools.

HTML reports

Use the -o html option to enable much more detailed HTML reports.
These include explanations for every notice,
cross-referenced with the standards,
as well as previews of the actual requests and responses.

Please note that these previews do not represent exactly
what was sent on the wire. For example, in an HTTP/1.x request,
a header may have been split into two physical lines,
but will be rendered as one line in the report.

Options

In the top right hand corner of an HTML report, there’s an options menu.

The first three options allow you to filter the report on the fly.
This is independent from silencing:
you cannot undo silencing with these options.

	Hide boring exchanges

	Check this to hide all exchanges where no problems were found
(only debug notices or none at all).

	Boring notices

	Additional notice IDs or severities that should not be considered problems.
For example: 10891135C (C for “comment”).

	Hide boring notices

	Check this if you don’t want to see those boring notices at all.
They will be hidden even from exchanges that have other problems.

Other options:

	Show remarks

	Check this to show remarks before requests and responses, if any.
The nature of these remarks depends on where the data comes from.
If you use the httpolice command-line tool,
remarks will contain the names of the input files
and (for streams input only)
the byte offsets within those files.
This can help with debugging.

HTML in text

What if you want full details like in HTML reports, but on a textual display?
Perhaps you’re running HTTPolice on a remote machine via ssh.

You can simply use a text-mode Web browser like w3m [http://w3m.sourceforge.net/]:

$ httpolice -o html ... | w3m -M -T text/html

Exit status

When using the httpolice command-line tool,
there’s another channel of information besides the report itself:
the command’s exit status.
If you pass the --fail-on option, the exit status will be non-zero
if any notices with the given severity (or higher) have been reported.
For example:

$ httpolice -i combined --fail-on comment test/combined_data/1125_1
------------ request: GET /
------------ response: 304 Not Modified
E 1125 Probably wrong use of status code 304

$ echo $?
1

This can be used to take automated action (like failing tests)
without parsing the report itself.

Python API

HTTPolice can be used as a Python library:
for example, to analyze requests or responses as part of a test suite.
It is not intended to be used inside live production processes.

Example

import io
import httpolice

exchanges = [
 httpolice.Exchange(
 httpolice.Request(u'https',
 u'GET', u'/index.html', u'HTTP/1.1',
 [(u'Host', b'example.com')],
 b''),
 [
 httpolice.Response(u'HTTP/1.1', 401, u'Unauthorized',
 [(u'Content-Type', b'text/plain')],
 b'No way!'),
]
)
]

bad_exchanges = []

for exch in exchanges:
 exch.silence([1089, 1227]) # Errors we don't care about
 httpolice.check_exchange(exch)
 if any(notice.severity > httpolice.Severity.comment
 for resp in exch.responses # We only care about responses
 for notice in resp.notices):
 bad_exchanges.append(exch)

if bad_exchanges:
 with io.open('report.html', 'wb') as f:
 httpolice.html_report(bad_exchanges, f)
 print('%d exchanges had problems; report written to file' %
 len(bad_exchanges))

API reference

	
class httpolice.Request(scheme, method, target, version, header_entries, body, trailer_entries=None, remark=None)

	
	Parameters

	
	scheme – The scheme of the request URI, as a Unicode string
(usually u'http' or u'https'),
or None if unknown (this disables some checks).

	method – The request method, as a Unicode string.

	target – The request target, as a Unicode string.
It must be in one of the four forms defined by RFC 7230 [https://tools.ietf.org/html/rfc7230#section-5.3].
(For HTTP/2, it can be reconstructed from pseudo-headers [https://tools.ietf.org/html/rfc7540#section-8.1.2.3].)

	version – The request’s protocol version, as a Unicode string,
or None if unknown (this disables some checks).

For requests sent over HTTP/1.x connections,
this should be the HTTP version sent in the request line [https://tools.ietf.org/html/rfc7230#section-3.1.1],
such as u'HTTP/1.0' or u'HTTP/1.1'.

For requests sent over HTTP/2 connections,
this should be u'HTTP/2'.

	header_entries – A list of the request’s headers (may be empty).
It must not include HTTP/2 pseudo-headers [https://tools.ietf.org/html/rfc7540#section-8.1.2.1].

Every item of the list must be a (name, value) pair.

name must be a Unicode string.

value may be a byte string or a Unicode string.
If it is Unicode, HTTPolice will assume that it has been decoded
from ISO-8859-1 (the historic encoding of HTTP),
and will encode it back into ISO-8859-1 before any processing.

	body – The request’s payload body, as a byte string,
or None if unknown (this disables some checks).

If the request has no payload (like a GET request),
this should be the empty string b''.

This must be the payload body as defined by RFC 7230 [https://tools.ietf.org/html/rfc7230#section-3.3]:
after removing any Transfer-Encoding (like chunked),
but before removing any Content-Encoding (like gzip).

	trailer_entries – A list of headers from the request’s trailer part
(as found in chunked coding [https://tools.ietf.org/html/rfc7230#section-4.1.2] or HTTP/2 [https://tools.ietf.org/html/rfc7540#section-8.1]),
or None if there is no trailer part.

The format is the same as for header_entries.

	remark – If not None, this Unicode string will be shown
above the request in HTML reports
(when the appropriate option is enabled).
For example, it can be used to identify the source of the data:
u'from somefile.dat, offset 1337'.

	
notices

	A list of Complaint instances
reported on this object.

	
silence(notice_ids)

	Silence unwanted notices on this object.

	Parameters

	notice_ids – An iterable of notice IDs that will be silenced on this object,
so they don’t appear in notices or in reports.

	
class httpolice.Response(version, status, reason, header_entries, body, trailer_entries=None, remark=None)

	
	Parameters

	
	version – The response’s protocol version, as a Unicode string,
or None if unknown (this disables some checks).

For responses sent over HTTP/1.x connections,
this should be the HTTP version sent in the status line [https://tools.ietf.org/html/rfc7230#section-3.1.2],
such as u'HTTP/1.0' or u'HTTP/1.1'.

For responses sent over HTTP/2 connections,
this should be u'HTTP/2'.

	status – The response’s status code, as an integer.

	reason – The response’s reason phrase (such as “OK” or “Not Found”),
as a Unicode string, or None if unknown (as in HTTP/2).

	header_entries – A list of the response’s headers (may be empty).
It must not include HTTP/2 pseudo-headers [https://tools.ietf.org/html/rfc7540#section-8.1.2.1].

Every item of the list must be a (name, value) pair.

name must be a Unicode string.

value may be a byte string or a Unicode string.
If it is Unicode, HTTPolice will assume that it has been decoded
from ISO-8859-1 (the historic encoding of HTTP),
and will encode it back into ISO-8859-1 before any processing.

	body – The response’s payload body, as a byte string,
or None if unknown (this disables some checks).

If the response has no payload (like 204 or 304 responses),
this should be the empty string b''.

This must be the payload body as defined by RFC 7230 [https://tools.ietf.org/html/rfc7230#section-3.3]:
after removing any Transfer-Encoding (like chunked),
but before removing any Content-Encoding (like gzip).

	trailer_entries – A list of headers from the response’s trailer part
(as found in chunked coding [https://tools.ietf.org/html/rfc7230#section-4.1.2] or HTTP/2 [https://tools.ietf.org/html/rfc7540#section-8.1]),
or None if there is no trailer part.

The format is the same as for header_entries.

	remark – If not None, this Unicode string will be shown
above this response in HTML reports
(when the appropriate option is enabled).
For example, it can be used to identify the source of the data:
u'from somefile.dat, offset 1337'.

	
notices

	A list of Complaint instances
reported on this object.

	
silence(notice_ids)

	Silence unwanted notices on this object.

	Parameters

	notice_ids – An iterable of notice IDs that will be silenced on this object,
so they don’t appear in notices or in reports.

	
class httpolice.Exchange(req, resps)

	
	Parameters

	
	req – The request, as a Request object.
If it is not available, you can pass None,
and the responses will be checked on their own.
However, this disables many checks
which rely on context information from the request.

	resps – The responses to req,
as a list of Response objects.
Usually this will be a list of 1 element.
If you only want to check the request, pass an empty list [].

	
request

	The Request object passed to the constructor.

	
responses

	The list of Response objects
passed to the constructor.

	
silence(notice_ids)

	Silence unwanted notices on this object.

	Parameters

	notice_ids – An iterable of notice IDs that will be silenced on this object,
so they don’t appear in notices or in reports.

	
httpolice.check_exchange(exch)

	Run all checks on the exchange exch, modifying it in place.

	
class httpolice.Complaint

	A notice as reported in a particular place.

	
id

	The notice’s ID (an integer).

	
severity

	The notice’s severity,
as a member of the Severity enumeration.

	
class httpolice.Severity

	A notice’s severity.

This is a standard Python enumeration
with the additional feature that its members are ordered:

>>> Severity.comment < Severity.error
True

The underlying values of this enumeration are not part of the API.

	
comment = 1

	

	
debug = 0

	

	
error = 2

	

	
httpolice.text_report(exchanges, buf)

	Generate a plain-text report with check results.

	Parameters

	
	exchanges – An iterable of Exchange objects.
They must be already processed by check_exchange().

	buf – The file (or file-like object) to which the report will be written.
It must be opened in binary mode (not text).

	
httpolice.html_report(exchanges, buf)

	Generate an HTML report with check results.

	Parameters

	
	exchanges – An iterable of Exchange objects.
They must be already processed by check_exchange().

	buf – The file (or file-like object) to which the report will be written.
It must be opened in binary mode (not text).

Integration helpers

Functions that may be useful for integrating with HTTPolice.

	
httpolice.helpers.headers_from_cgi(cgi_dict)

	Convert CGI variables into header entries.

	Parameters

	cgi_dict – A mapping of CGI-like meta-variables,
as found in (for example) WSGI’s environ
or django.http.HttpRequest.META.

	Returns

	A list of header entries,
suitable for passing into httpolice.Request.

	
httpolice.helpers.pop_pseudo_headers(entries)

	Remove and return HTTP/2 pseudo-headers [https://tools.ietf.org/html/rfc7540#section-8.1.2.1] from a list of headers.

	Parameters

	entries – A list of header name-value pairs,
as would be passed to httpolice.Request
or httpolice.Response.
It will be modified in-place by removing all names
that start with a colon (:).

	Returns

	A dictionary of the removed pseudo-headers.

History of changes

0.8.0 - 2019-03-03

	Dropped Python 2 support. If you need it, use the older versions.

	HTTPolice no longer requires six [https://pypi.org/project/six/] nor singledispatch [https://pypi.org/project/singledispatch/].

	HTTPolice now pulls in Google’s Brotli [https://pypi.org/project/Brotli/] instead of brotlipy [https://pypi.org/project/brotlipy/],
but this is merely a packaging change; it can work with either.

	Notices 1299 [https://httpolice.readthedocs.io/page/notices.html#1299] and 1300 [https://httpolice.readthedocs.io/page/notices.html#1300] are no longer reported on Alt-Svc.

0.7.0 - 2018-03-31

Changed

	Reflecting changes in RFC 8187 [https://tools.ietf.org/html/rfc8187] and RFC 8259 [https://tools.ietf.org/html/rfc8259],
notices 1253 [https://httpolice.readthedocs.io/page/notices.html#1253] (bad charset) and 1281 [https://httpolice.readthedocs.io/page/notices.html#1281] (bad encoding for JSON)
are now reported for all encodings other than UTF-8, and
notice 1255 (ISO-8859-1 in Content-Disposition) has been removed.

Added

	Checks for quoted commas and semicolons that might confuse a naive parser
(notices 1299 [https://httpolice.readthedocs.io/page/notices.html#1299], 1300 [https://httpolice.readthedocs.io/page/notices.html#1300]).

	New checks for Link headers according to RFC 8288 [https://tools.ietf.org/html/rfc8288] (notices 1307 [https://httpolice.readthedocs.io/page/notices.html#1307],
1308 [https://httpolice.readthedocs.io/page/notices.html#1308], 1309 [https://httpolice.readthedocs.io/page/notices.html#1309]).

	Checks for immutable responses [https://tools.ietf.org/html/rfc8246] (notices 1301 [https://httpolice.readthedocs.io/page/notices.html#1301], 1302 [https://httpolice.readthedocs.io/page/notices.html#1302], 1303 [https://httpolice.readthedocs.io/page/notices.html#1303]).

	Early hints [https://tools.ietf.org/html/rfc8297] are now recognized (due to their idiosyncratic semantics,
they avoid many checks that are applied to all other responses).

	Checks for the Accept-Post [https://www.w3.org/TR/ldp/#header-accept-post] header (notice 1310 [https://httpolice.readthedocs.io/page/notices.html#1310]).

	Check for no Transfer-Encoding in response to HTTP/1.0 (notice 1306 [https://httpolice.readthedocs.io/page/notices.html#1306]).

	Check for 100 (Continue) before switching protocols (notice 1305 [https://httpolice.readthedocs.io/page/notices.html#1305]).

	Check that the sequence of responses to a request makes sense
(notice 1304 [https://httpolice.readthedocs.io/page/notices.html#1304]).

	HAR files exported from Chrome and Insomnia [https://insomnia.rest/] are handled slightly better.

Fixed

	Headers like Allow [https://tools.ietf.org/html/rfc7231#section-7.4.1] and Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] are now parsed more correctly
(RFC Errata 5257 [https://www.rfc-editor.org/errata/eid5257]).

	gzip-encoded payloads are now decompressed more reliably.

	When analyzing TCP streams [https://httpolice.readthedocs.io/page/streams.html], HTTPolice now uses a stricter heuristic
for detecting HTTP/1.x streams, producing fewer spurious 1006 [https://httpolice.readthedocs.io/page/notices.html#1006]/1009 [https://httpolice.readthedocs.io/page/notices.html#1009]
notices.

	Notice 1291 [https://httpolice.readthedocs.io/page/notices.html#1291] (Preference-Applied needs Vary) is no longer reported
on responses to POST.

0.6.0 - 2017-08-02

Changed

	Notice 1277 [https://httpolice.readthedocs.io/page/notices.html#1277] (obsolete ‘X-‘ prefix) is now reported only once per message.

	When parsing TCP streams, HTTPolice no longer attempts to process very long
header lines (currently 16K; they will fail with notice 1006 [https://httpolice.readthedocs.io/page/notices.html#1006]/1009 [https://httpolice.readthedocs.io/page/notices.html#1009])
and message bodies (currently 1G; notice 1298 [https://httpolice.readthedocs.io/page/notices.html#1298]).

	Notice 1259 (malformed parameter in Alt-Svc) has been removed: the same
problem is now reported as notice 1158 [https://httpolice.readthedocs.io/page/notices.html#1158].

	The syntax of chunk extensions [https://tools.ietf.org/html/rfc7230#section-4.1.1] is no longer checked.

Added

	Checks for the Forwarded [https://tools.ietf.org/html/rfc7239] header (notices 1296 [https://httpolice.readthedocs.io/page/notices.html#1296], 1297 [https://httpolice.readthedocs.io/page/notices.html#1297]).

Fixed

	Fixed a few bugs and design problems that caused HTTPolice to use more time
and memory than necessary in various cases (sometimes much more).

	Fixed some Unicode errors under Python 2.

	Notice 1013 [https://httpolice.readthedocs.io/page/notices.html#1013] is no longer wrongly reported for some headers
such as Vary.

	Fixed a crash on some pathological values of ‘charset’ in Content-Type.

0.5.2 - 2017-03-24

	Fixed a few rare crashing bugs found with american fuzzy lop [http://lcamtuf.coredump.cx/afl/].

	Fixed a couple cosmetic bugs in HTML reports.

	When parsing a message with an unknown transfer coding [https://tools.ietf.org/html/rfc7230#section-4], HTTPolice now
correctly skips any checks on its payload body (such as notice 1038 [https://httpolice.readthedocs.io/page/notices.html#1038]).

0.5.1 - 2017-03-15

	Fixed compatibility with httpolice-devtool [https://chrome.google.com/webstore/detail/httpolice-devtool/hnlnhebgfcfemjaphgbeokdnfpgbnhgn] (when you point it to a local
hpoliced [https://pypi.org/project/hpoliced/] instance).

0.5.0 - 2017-03-12

Added

	When analyzing TCP streams [https://httpolice.readthedocs.io/page/streams.html], HTTPolice now reorders exchanges
based on the Date header. In other words, messages sent at the same time
on different connections are now close to each other in the report.

	Checks for the Prefer [https://tools.ietf.org/html/rfc7240] mechanism (notices 1285 [https://httpolice.readthedocs.io/page/notices.html#1285] through 1291 [https://httpolice.readthedocs.io/page/notices.html#1291]).

	The syntax of method and header names and reason phrases is now checked
for all messages, not only for those parsed from TCP streams
(notices 1292 [https://httpolice.readthedocs.io/page/notices.html#1292], 1293 [https://httpolice.readthedocs.io/page/notices.html#1293], 1294 [https://httpolice.readthedocs.io/page/notices.html#1294]).

	Check for method names that are not uppercase (notice 1295 [https://httpolice.readthedocs.io/page/notices.html#1295]).

	The XML-related features removed in 0.4.0 have been restored.

	Check for cacheable 421 (Misdirected Request) responses (notice 1283 [https://httpolice.readthedocs.io/page/notices.html#1283]).

	Check for 202 (Accepted) responses with no body (notice 1284 [https://httpolice.readthedocs.io/page/notices.html#1284]).

	HTML reports have been optimized to load slightly faster in browsers.

Changed

	Titles of many notices were changed to make more sense when viewed alone
(as in text reports). If you depend on their wording (which you shouldn’t),
you may need to adjust.

Fixed

	Notice 1021 [https://httpolice.readthedocs.io/page/notices.html#1021] is no longer reported on HTTP/2 requests.

Meanwhile

	mitmproxy integration [https://mitmproxy-httpolice.readthedocs.io/] has new features for interactive use.

0.4.0 - 2017-01-14

Added

	Python 3.6 compatibility.

	Decompression of brotli [https://tools.ietf.org/html/rfc7932] compressed payloads (Content-Encoding: br).

	Checks for JSON charsets (notices 1280 [https://httpolice.readthedocs.io/page/notices.html#1280] and 1281 [https://httpolice.readthedocs.io/page/notices.html#1281]).

	Checks for some wrong media types,
currently plain/text and text/json (notice 1282 [https://httpolice.readthedocs.io/page/notices.html#1282]).

Removed

	The deprecated constants
httpolice.ERROR, httpolice.COMMENT, httpolice.DEBUG
have been removed. Use httpolice.Severity instead.

	When checking XML payloads, HTTPolice
no longer takes precautions against denial-of-service attacks,
because the defusedxml [https://pypi.org/project/defusedxml/] module does not currently work with Python 3.6.
DoS attacks against HTTPolice are considered unlikely and non-critical.

	Notice 1275 (“XML with entity declarations”) has been removed
for the same reason.

Other

	There is now a third-party Chrome extension [https://chrome.google.com/webstore/detail/httpolice-devtool/hnlnhebgfcfemjaphgbeokdnfpgbnhgn] for HTTPolice.

0.3.0 - 2016-08-14

Added

	HTTPolice now caches more intermediate values in memory,
which makes it significantly faster in many cases.

	HTTPolice now works correctly under PyPy [http://pypy.org/] (the 2.7 variant),
which, too, can make it faster on large inputs.
You will probably need a recent version of PyPy (5.3.1 is OK).

	HTML reports [https://httpolice.readthedocs.io/page/reports.html] now have an “options” menu
to filter exchanges and notices on the fly.

	The httpolice command-line tool now has
a --fail-on option to exit with a non-zero status
if any notices with a given severity have been reported.

	Work around various problems in HAR files exported by Firefox and Fiddler [https://www.telerik.com/fiddler].

	HTML reports can now display a remark before every request and response
(enabled with the Show remarks checkbox in the “options” menu).
The httpolice command-line tool puts the input filename in this remark.
With the Python API [https://httpolice.readthedocs.io/page/api.html], you can put anything there
using the remark argument to Request and Response constructors.

	Notices about HTTP/1.x framing errors (such as 1006 [https://httpolice.readthedocs.io/page/notices.html#1006])
now include the input filename as well.

	Check for missing scheme name in authorization headers (notice 1274 [https://httpolice.readthedocs.io/page/notices.html#1274]).

	Check for missing quality values in headers like Accept (notice 1276 [https://httpolice.readthedocs.io/page/notices.html#1276]).

	Check for obsolete ‘X-‘ prefix in experimental headers (notice 1277 [https://httpolice.readthedocs.io/page/notices.html#1277]).

	Notice 1093 [https://httpolice.readthedocs.io/page/notices.html#1093] recognizes a few more product names as client libraries.

Changed

	For the tcpick and tcpflow input [https://httpolice.readthedocs.io/page/streams.html] modes,
you now have to use different options to tcpick/tcpflow (consult the manual).

	Text reports [https://httpolice.readthedocs.io/page/reports.html] no longer show request/response numbers.
If you parse these reports, you may need to adjust.

	Styles in HTML reports have been tweaked to make them more readable.

Deprecated

	In the Python API [https://httpolice.readthedocs.io/page/api.html],
the constants httpolice.ERROR, httpolice.COMMENT, httpolice.DEBUG
have been replaced with a single httpolice.Severity enumeration,
and will be removed in the next release.

Fixed

	The tcpick and tcpflow input [https://httpolice.readthedocs.io/page/streams.html] modes should now be more reliable,
although they still suffer from certain problems.

	CONNECT requests in HAR files are now handled correctly.

	Notices 1053 [https://httpolice.readthedocs.io/page/notices.html#1053] and 1066 [https://httpolice.readthedocs.io/page/notices.html#1066] are no longer reported
on requests with bodies of length 0.

0.2.0 - 2016-05-08

Added

	Django integration [https://django-httpolice.readthedocs.io/] (as a separate distribution).

	Unwanted notices can now be silenced [https://httpolice.readthedocs.io/page/concepts.html#silence].

	Checks for OAuth bearer tokens [https://tools.ietf.org/html/rfc6750].

	Checks for the Content-Disposition [https://tools.ietf.org/html/rfc6266] header.

	Checks for RFC 5987 [https://tools.ietf.org/html/rfc5987] encoded values.

	Checks for alternative services [https://tools.ietf.org/html/rfc7838].

	Checks for HTTP/1.1 connection control features prohibited in HTTP/2 [https://tools.ietf.org/html/rfc7540#section-8.1.2.2].

	Stale controls [https://tools.ietf.org/html/rfc5861] are now recognized.

	Checks for status code 451 (Unavailable For Legal Reasons) [https://tools.ietf.org/html/rfc7725].

Changed

	mitmproxy integration [https://mitmproxy-httpolice.readthedocs.io/] has been moved into a separate distribution.

Fixed

	Input files from tcpick are sorted correctly.

	Notice 1108 [https://httpolice.readthedocs.io/page/notices.html#1108] doesn’t crash in non-English locales.

	Notices such as 1038 [https://httpolice.readthedocs.io/page/notices.html#1038] are not reported on responses to HEAD.

0.1.0 - 2016-04-25

	Initial release.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 httpolice	

 	
 	
 httpolice.helpers	

Index

 C
 | D
 | E
 | H
 | I
 | N
 | P
 | R
 | S
 | T

C

 	
 	check_exchange() (in module httpolice)

 	
 	comment (httpolice.Severity attribute)

 	Complaint (class in httpolice)

D

 	
 	debug (httpolice.Severity attribute)

E

 	
 	error (httpolice.Severity attribute)

 	
 	Exchange (class in httpolice)

H

 	
 	headers_from_cgi() (in module httpolice.helpers)

 	
 	html_report() (in module httpolice)

 	httpolice.helpers (module)

I

 	
 	id (httpolice.Complaint attribute)

N

 	
 	notices (httpolice.Request attribute)

 	(httpolice.Response attribute)

P

 	
 	pop_pseudo_headers() (in module httpolice.helpers)

R

 	
 	Request (class in httpolice)

 	request (httpolice.Exchange attribute)

 	
 	Response (class in httpolice)

 	responses (httpolice.Exchange attribute)

S

 	
 	Severity (class in httpolice)

 	severity (httpolice.Complaint attribute)

 	
 	silence() (httpolice.Exchange method)

 	(httpolice.Request method)

 	(httpolice.Response method)

T

 	
 	text_report() (in module httpolice)

 _static/ajax-loader.gif

_images/mitmproxy-httpolice.png
:26:22 PATCH https://eve
64008b31
~ 206 0K application/json 279b 1.10s

Request Response o Detall |

lemo . he rokuapp . com/people/5ab12b16662d2460)

Metadata:
HTTPolice: request E 1080 Syntax error in If-Match header
C 1213 Content-Type: application/json is not suitable
for PATCH

HTTPolice: response C 1214 application/json patch should be rejected

Server Connection:

Address eve-deno. herokuapp .com:443
Resolved Address 174.129.22.75:443
HTTP Version HTTP/1.1
Server Certificate:
Type RSA, 2048 bits
SHAL digest ©8:38:71:72:62:43:6E:CA:ED:42:86:93:BA:7E:DF:81:C4:BC:62:30
Valid to 2020-06-22 12:00:00
Valid from 2017-04-19 06:60:00
Serial 3567297634758599271664359987615654486

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 HTTPolice user manual

 		
 Quickstart

 		
 Installation

 		
 Using HAR files

 		
 Better reports

 		
 Using mitmproxy

 		
 Django integration

 		
 More options

 		
 Installation

 		
 On Debian/Ubuntu

 		
 On Fedora

 		
 On Windows

 		
 General concepts

 		
 Exchanges

 		
 Reports

 		
 Silencing unwanted notices

 		
 Silencing globally

 		
 Silencing locally

 		
 Analyzing raw TCP streams

 		
 Using tcpflow

 		
 Using tcpick

 		
 Other sniffers

 		
 Combined format

 		
 Analyzing HAR files

 		
 Viewing reports

 		
 Text reports

 		
 HTML reports

 		
 Options

 		
 HTML in text

 		
 Exit status

 		
 Python API

 		
 Example

 		
 API reference

 		
 Integration helpers

 		
 History of changes

 		
 0.8.0 - 2019-03-03

 		
 0.7.0 - 2018-03-31

 		
 Changed

 		
 Added

 		
 Fixed

 		
 0.6.0 - 2017-08-02

 		
 Changed

 		
 Added

 		
 Fixed

 		
 0.5.2 - 2017-03-24

 		
 0.5.1 - 2017-03-15

 		
 0.5.0 - 2017-03-12

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Meanwhile

 		
 0.4.0 - 2017-01-14

 		
 Added

 		
 Removed

 		
 Other

 		
 0.3.0 - 2016-08-14

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Fixed

 		
 0.2.0 - 2016-05-08

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.1.0 - 2016-04-25

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

